This paper presents a parallel hardware implementation of a well-known navigation control method on reconfigurable digital circuits. Trajectories are estimated after an iterated computation of the harmonic functions, given the goal and obstacle positions of the navigation problem. The proposed massively distributed implementation locally computes the direction to choose to get to the goal position at any point of the environment. Changes in this environment may be immediately taken into account, for example when obstacles are discovered during an on-line exploration. The implementation results show that the proposed architecture simultaneously improves speed, power consumption, precision, and environment size.
Bernard Girau, Amine M. Boumaza