Natural Language Generation for personality rich characters represents one of the important directions for believable agents research. The typical approach to interactive NLG is to hand-author textual responses to different situations. In this paper we address NLG for interactive games. Specifically, we present a novel templatebased system that provides two distinct advantages over existing systems. First, our system not only works for dialogue, but enables a character’s personality and emotional state to influence the feel of the utterance. Second, our templates are resuable across characters, thus decreasing the burden on the game author. We briefly describe our system and present results of a preliminary evaluation study.
Christina R. Strong, Manish Mehta, Kinshuk Mishra,