Abstract. Many applications for irrigation management and environment monitoring exploit buried sensors wired-connected to the soil surface for information retrieval. Wireless Underground Sensor Networks (WUSNs) is an emerging area of research that promises to provide communication capabilities to these sensors. To accomplish this, a reliable wireless underground communication channel is necessary, allowing the direct communication between the buried sensors without the help of an aboveground device. However, the significantly high attenuation caused by soil is the main challenge for the feasibility of WUSNs. Recent theoretical results highlight the potential of smaller attenuation rates with the use of smaller radio frequencies. In this work, experimental measurements are presented at the frequency of 433MHz, which show a good agreement with the theoretical studies. We observe that (a) a decrease of the frequency of the wireless signal implies a smaller soil attenuation rate, (b) the ...
Agnelo R. Silva, Mehmet C. Vuran