Sciweavers

ACL
2006

An End-to-End Discriminative Approach to Machine Translation

14 years 1 months ago
An End-to-End Discriminative Approach to Machine Translation
We present a perceptron-style discriminative approach to machine translation in which large feature sets can be exploited. Unlike discriminative reranking approaches, our system can take advantage of learned features in all stages of decoding. We first discuss several challenges to error-driven discriminative approaches. In particular, we explore different ways of updating parameters given a training example. We find that making frequent but smaller updates is preferable to making fewer but larger updates. Then, we discuss an array of features and show both how they quantitatively increase BLEU score and how they qualitatively interact on specific examples. One particular feature we investigate is a novel way to introduce learning into the initial phrase extraction process, which has previously been entirely heuristic.
Percy Liang, Alexandre Bouchard-Côté,
Added 30 Oct 2010
Updated 30 Oct 2010
Type Conference
Year 2006
Where ACL
Authors Percy Liang, Alexandre Bouchard-Côté, Dan Klein, Benjamin Taskar
Comments (0)