We study state estimation via wireless sensors over fading channels. Packet loss probabilities depend upon time-varying channel gains, packet lengths and transmission power levels of the sensors. Measurements are coded into packets by using either independent coding or distributed zero-error coding. At the gateway, a time-varying Kalman filter uses the received packets to provide the state estimates. To trade sensor energy expenditure for state estimation accuracy, we develop a predictive control algorithm which, in an online fashion, determines the transmission power levels and codebooks to be used by the sensors. To further conserve sensor energy, the controller is located at the gateway and sends coarsely quantized power increment commands, only whenever deemed necessary. Simulations based on real channel measurements illustrate that the proposed method gives excellent results.
Daniel E. Quevedo, Anders Ahlén, Jan &Oslas