Proposed models for spatially-aware extensions of role-based access control (RBAC) combine the administrative and security advantages of RBAC with the dynamic nature of mobile and pervasive computing systems. However, implementing systems that enforce these models poses a number of challenges. As a solution, we propose an architecture for designing such a system. The architecture is based on an enhanced RBAC model that supports location-based access control policies by incorporating spatial constraints. Enforcing spatially-aware RBAC policies in a mobile environment requires addressing several challenges. First, one must guarantee the integrity of a user’s location during an access request. We adopt a proximity-based solution using Near-Field Communication (NFC) technology. The next challenge is to verify the user’s position continuously satisfies the location constraints. To capture these policy restrictions, we incorporate elements of the UCONABC usage control model in our arch...
Michael S. Kirkpatrick, Elisa Bertino