Fingerprint matching is affected by the nonlinear distortion introduced in fingerprint impressions during the image acquisition process. This nonlinear deformation causes fingerprint features such as minutiae points and ridge curves to be distorted in a complex manner. In this paper we develop an average deformation model for a fingerprint impression (baseline impression) by observing its relative distortion with respect to several other impressions of the same finger. The deformation is computed using a Thin Plate Spline (TPS) model that relies on ridge curve correspondences between image pairs. The estimated average deformation is used to distort the minutiae template of the baseline impression prior to matching. An index of deformation has been proposed to select the average deformation model with the least variability corresponding to a finger. Preliminary results indicate that the average deformation model can improve the matching performance of a fingerprint matcher.
Arun Ross, Sarat C. Dass, Anil K. Jain