3D Face modeling is still one of the biggest challenges in computer graphics. In this paper we present a novel framework that acquires the 3D shape, texture, pose and illumination of a face from a single photograph. Additionally, we show how we can recreate a face under varying illumination conditions. Or, essentially relight it. Using a custom-built face scanning system, we have collected 3D face scans and light reflection images of a large and diverse group of human subjects. We derive a morphable face model for 3D face shapes and accompanying textures by transforming the data into a linear vector sub-space. The acquired images of faces under variable illumination are then used to derive a bilinear illumination model that spans 3D face shape and illumination variations. Using both models we, in turn, propose a novel fitting framework that estimates the parameters of the morphable model given a single photograph. Our framework can deal with complex face reflectance and lighting en...