Lexical-semantic resources are used extensively for applied semantic inference, yet a clear quantitative picture of their current utility and limitations is largely missing. We propose system- and application-independent evaluation and analysis methodologies for resources' performance, and systematically apply them to seven prominent resources. Our findings identify the currently limited recall of available resources, and indicate the potential to improve performance by examining non-standard relation types and by distilling the output of distributional methods. Further, our results stress the need to include auxiliary information regarding the lexical and logical contexts in which a lexical inference is valid, as well as its prior validity likelihood.