While iterative optimization has become a popular compiler optimization approach, it is based on a premise which has never been truly evaluated: that it is possible to learn the best compiler optimizations across data sets. Up to now, most iterative optimization studies find the best optimizations through repeated runs on the same data set. Only a handful of studies have attempted to exercise iterative optimization on a few tens of data sets. In this paper, we truly put iterative compilation to the test for the first time by evaluating its effectiveness across a large number of data sets. We therefore compose KDataSets, a data set suite with 1000 data sets for 32 programs, which we release to the public. We characterize the diversity of KDataSets, and subsequently use it to evaluate iterative optimization. We demonstrate that it is possible to derive a robust iterative optimization strategy across data sets: for all 32 programs, we find that there exists at least one combination of co...