The ever increasing gap in processor and memory speeds has a very negative impact on performance. One possible solution to overcome this problem is the Kilo-instruction processor. It is a recent proposed architecture able to hide large memory latencies by having thousands of in-flight instructions. Current multiprocessor systems also have to deal with this increasing memory latency while facing other sources of latencies: those coming from communication among processors. What we propose, in this paper, is the use of Kilo-instruction processors as computing nodes for small-scale CC-NUMA multiprocessors. We evaluate what we appropriately call Kilo-instruction Multiprocessors. This kind of systems appears to achieve very good performance while showing two interesting behaviours. First, the great amount of in-flight instructions makes the system not just to hide the latencies coming from the memory accesses but also the inherent communication latencies involved in remote memory accesses....