In the p-Set Splitting problem we are given a universe U, a family F of subsets of U and a positive integer k and the objective is to find a partition of U into W and B such that there are at least k sets in F that have non-empty intersection with both B and W. In this paper we study p-Set Splitting from the view point of kernelization and parameterized algorithms. Given an instance (U, F, k) of p-Set Splitting, our kernelization algorithm obtains an equivalent instance with at most 2k sets and k elements in polynomial time. Finally, we give a fixed parameter tractable algorithm for