Bag-of-words approaches to information retrieval (IR) are effective but assume independence between words. The Hyperspace Analogue to Language (HAL) is a cognitively motivated and validated semantic space model that captures statistical dependencies between words by considering their co-occurrences in a surrounding window of text. HAL has been successfully applied to query expansion in IR, but has several limitations, including high processing cost and use of distributional statistics that do not exploit syntax. In this paper, we pursue two methods for incorporating syntactic-semantic information from textual `events' into HAL. We build the HAL space directly from events to investigate whether processing costs can be reduced through more careful definition of word co-occurrence, and improve the quality of the pseudo-relevance feedback by applying event information as a constraint during HAL construction. Both methods significantly improve performance results in comparison with or...