Afferent fibres of ampullary electroreceptor organs in electrosensitive fish fire spontaneously, that is, they fire without external stimulus. In the past it has been postulated that the spontaneous activity originates from a sustained level of neurotransmitter release delivered by the electroreceptor cells. The spontaneous activity can be modulated by electrical stimuli. Blocking of the chemical synapse, however, reduces the susceptibility to electrical stimuli to 2% or less, but the spontaneous activity to 60% only. By evaluating existing experimental evidence it is concluded that spontaneous firing of afferents is based on two processes. (1) A membrane bound oscillator, which does not depend on transmitter release, is almost free of frequency fluctuations, and is described by Hodgkin/Huxley-equations (HH-equations). (2) Release of neurotransmitter, which increases the firing level, adds frequency noise, and raises the susceptibility of the afferent to electrical stimuli. The...
Rob C. Peters, Franklin Bretschneider, Mieke L. St