A mathematical formula containing one or more free variables is "general" in the sense that it provides a solution to an entire category of problems. For example, the familiar formula for solving a quadratic equation contains free variables representing the equation's coefficients. Previous work has demonstrated that genetic programming can automatically synthesize the design for a controller consisting of a topological arrangement of signal processing blocks (such as integrators, differentiators, leads, lags, gains, adders, inverters, and multipliers), where each block is further specified ("tuned") by a numerical component value, and where the evolved controller satisfies user-specified requirements. The question arises as to whether it is possible to use genetic programming to automatically create a "generalized" controller for an entire category of such controller design problems instead of a single instance of the problem. This paper shows, for...
John R. Koza, Jessen Yu, Martin A. Keane, William