Sciweavers

CORR
2008
Springer

Evolving Dynamic Change and Exchange of Genotype Encoding in Genetic Algorithms for Difficult Optimization Problems

13 years 11 months ago
Evolving Dynamic Change and Exchange of Genotype Encoding in Genetic Algorithms for Difficult Optimization Problems
The application of genetic algorithms (GAs) to many optimization problems in organizations often results in good performance and high quality solutions. For successful and efficient use of GAs, it is not enough to simply apply simple GAs (SGAs). In addition, it is necessary to find a proper representation for the problem and to develop appropriate search operators that fit well to the properties of the genotype encoding. The representation must at least be able to encode all possible solutions of an optimization problem, and genetic operators such as crossover and mutation should be applicable to it. In this paper, serial alternation strategies between two codings are formulated in the framework of dynamic change of genotype encoding in GAs for function optimization. Likewise, a new variant of GAs for difficult optimization problems denoted Split-and-Merge GA (SM-GA) is developed using a parallel implementation of an SGA and evolving a dynamic exchange of individual representation in t...
Maroun Bercachi, Philippe Collard, Manuel Clergue,
Added 09 Dec 2010
Updated 09 Dec 2010
Type Journal
Year 2008
Where CORR
Authors Maroun Bercachi, Philippe Collard, Manuel Clergue, Sébastien Vérel
Comments (0)