Witnesses and victims of serious crime are often required to construct a facial composite, a visual likeness of a suspect’s face. The traditional method is for them to select individual facial features to build a face, but often these images are of poor quality. We have developed a new method whereby witnesses repeatedly select instances from an array of complete faces and a composite is evolved over time by searching a face model built using PCA. While past research suggests that the new approach is superior, performance is far from ideal. In the current research, face models are built which match a witness’s description of a target. It is found that such ‘tailored’ models promote better quality composites, presumably due to a more effective search, and also that smaller models may be even better. The work has implications for researchers who are using statistical modelling techniques for recognising faces.
Charlie D. Frowd, Vicki Bruce, Carol Gannon, Mark