Sciweavers

HAIS
2011
Springer

Evolving Temporal Fuzzy Association Rules from Quantitative Data with a Multi-Objective Evolutionary Algorithm

13 years 2 months ago
Evolving Temporal Fuzzy Association Rules from Quantitative Data with a Multi-Objective Evolutionary Algorithm
A novel method for mining association rules that are both quantitative and temporal using a multi-objective evolutionary algorithm is presented. This method successfully identifies numerous temporal association rules that occur more frequently in areas of a dataset with specific quantitative values represented with fuzzy sets. The novelty of this research lies in exploring the composition of quantitative and temporal fuzzy association rules and the approach of using a hybridisation of a multi-objective evolutionary algorithm with fuzzy sets. Results show the ability of a multi-objective evolutionary algorithm (NSGA-II) to evolve multiple target itemsets that have been augmented into synthetic datasets.
Stephen G. Matthews, Mario A. Góngora, Adri
Added 28 Aug 2011
Updated 28 Aug 2011
Type Journal
Year 2011
Where HAIS
Authors Stephen G. Matthews, Mario A. Góngora, Adrian A. Hopgood
Comments (0)