We present a new Feasibility Pump algorithm tailored for nonconvex Mixed Integer Nonlinear Programming problems. Differences with the previously proposed Feasibility Pump algorithms and difficulties arising from nonconvexities in the models are extensively discussed. The main methodological innovations of this variant are: (a) the first subproblem is a nonconvex continuous Nonlinear Program, which is solved using global optimization techniques; (b) the solution method for the second subproblem is complemented by a tabu list. We exhibit computational results showing the good performance of the algorithm on instances taken from the MINLPLib.