Recent increase in the number of search engines on the Web and the availability of meta search engines that can query multiple search engines makes it important to find effective methods for combining results coming from different sources. In this paper we introduce novel methods for reranking in a meta search environment based on expert agreement and contents of the snippets. We also introduce an objective way of evaluating different methods for ranking search results that is based upon implicit user judgements. We incorporated our methods and two variations of commonly used merging methods in our meta search engine, Mearf, and carried out an experimental study using logs accumulated over a period of twelve months. Our experiments show that the choice of the method used for merging the output produced by different search engines plays a significant role in the overall quality of the search results. In almost all cases examined, results produced by some of the new methods introduced w...
B. Uygar Oztekin, George Karypis, Vipin Kumar