In this paper, we propose a new method for computing and applying language model look-ahead in a dynamic network decoder, exploiting the sparseness of backing-off n-gram language models. Only partial (sparse) look-ahead tables are computed, with a size that depends on the number of words that have an n-gram score in the language model for a specific context, rather than a constant, vocabulary dependent size. Since high order backing-off language models are inherently sparse, this mechanism reduces the runtime- and memory effort of computing the look-ahead tables by magnitudes. A modified decoding algorithm is required to apply these sparse LM look-ahead tables efficiently. We show that sparse LM look-ahead is much more efficient than the classical method, and that full n-gram look-ahead becomes favorable over lower order look-ahead even when many distinct LM contexts appear during decoding.