Localization is a fundamental operation for many wireless networks. While GPS is widely used for location determination, it is unavailable in many environments either due to its high cost or the lack of line of sight to the satellites (e.g., indoors, under the ground, or in a downtown canyon). The limitations of GPS have motivated researchers to develop many localization schemes to infer locations based on measured wireless signals. However, most of these existing schemes focus on localization in static wireless networks. As many wireless networks are mobile (e.g., mobile sensor networks, disaster recovery networks, and vehicular networks), we focus on localization in mobile networks in this paper. We analyze real mobility traces and find that they exhibit temporal stability and low-rank structure. Motivated by this observation, we develop three novel localization schemes to accurately determine locations in mobile networks: (i) Low Rank based Localization (LRL), which exploits the lo...