The design and development of locomotory subsystems such as legs is a key issue in the broader topic of autonomous mobile systems. Simplification of substructures, sensing, actuation and control can aid to better understand the dynamics of legged locomotion and will make the implementation of legs in engineered systems more effective. This paper examines recent results in the development of toe walking on the JenaWalker II robot. The robot is shown, while supported on a treadmill, to be capable of accelerating from 0 to over 0.6 m/s without adjustment of control parameters such as hip actuator sweep frequency or amplitude. The resulting stable motion is due to the adaptability of the passive structures incorporated into the legs. The roles of the individual muscletendon groups are examined and a potential configuration for future heel-toe trials is suggested.