Similarity search is an important problem in information retrieval. This similarity is based on a distance. Symbolic representation of time series has attracted many researchers recently, since it reduces the dimensionality of these high dimensional data objects. We propose a new distance metric that is applied to symbolic data objects and we test it on time series data bases in a classification task. We compare it to other distances that are well known in the literature for symbolic data objects. We also prove, mathematically, that our distance is metric.