Like most natural language disambiguation tasks, word sense disambiguation (WSD) requires world knowledge for accurate predictions. Several proxies for this knowledge have been investigated, including labeled corpora, user-contributed knowledge, and machine readable dictionaries, but each of these proxies requires significant manual effort to create, and they do not cover all of the ambiguous terms in a language. We investigate the task of automatically extracting world knowledge, in the form of glosses, from an unlabeled corpus. We demonstrate how to use these glosses to automatically label a training corpus to build a statistical WSD system that uses no manually-labeled data, with experimental results approaching that of a supervised SVMbased classifier.