Sciweavers

WWW
2003
ACM

Extrapolation methods for accelerating PageRank computations

15 years 1 months ago
Extrapolation methods for accelerating PageRank computations
We present a novel algorithm for the fast computation of PageRank, a hyperlink-based estimate of the "importance" of Web pages. The original PageRank algorithm uses the Power Method to compute successive iterates that converge to the principal eigenvector of the Markov matrix representing the Web link graph. The algorithm presented here, called Quadratic Extrapolation, accelerates the convergence of the Power Method by periodically subtracting off estimates of the nonprincipal eigenvectors from the current iterate of the Power Method. In Quadratic Extrapolation, we take advantage of the fact that the first eigenvalue of a Markov matrix is known to be 1 to compute the nonprincipal eigenvectors using successive iterates of the Power Method. Empirically, we show that using Quadratic Extrapolation speeds up PageRank computation by 25? 300% on a Web graph of 80 million nodes, with minimal overhead. Our contribution is useful to the PageRank community and the numerical linear alge...
Sepandar D. Kamvar, Taher H. Haveliwala, Christoph
Added 22 Nov 2009
Updated 22 Nov 2009
Type Conference
Year 2003
Where WWW
Authors Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, Gene H. Golub
Comments (0)