Neural activity appears to be a crucial component for shaping the receptive fields of cortical simple cells into adjacent, oriented subregions alternately receiving ON- and OFF-center excitatory geniculate inputs. It is known that the orientation selective responses of V1 neurons are refined by visual experience. After eye opening, the spatiotemporal structure of neural activity in the early stages of the visual pathway depends both on the visual environment and on how the environment is scanned. We have used computational modeling to investigate how eye movements might affect the refinement of the orientation tuning of simple cells in the presence of a Hebbian scheme of synaptic plasticity. Levels of correlation between the activity of simulated cells were examined while natural scenes were scanned so as to model sequences of saccades and fixational eye movements, such as microsaccades, tremor and ocular drift. The specific patterns of activity required for a quantitatively accurate ...