Recent eye tracking studies in natural tasks suggest that there is a tight link between eye movements and goal directed motor actions. However, most existing models of human eye movements provide a bottom up account that relates visual attention to attributes of the visual scene. The purpose of this paper is to introduce a new model of human eye movements that directly ties eye movements to the ongoing demands of behavior. The basic idea is that eye movements serve to reduce uncertainty about environmental variables that are task relevant. A value is assigned to an eye movement by estimating the expected cost of the uncertainty that will result if the movement is not made. If there are several candidate eye movements, the one with the highest expected value is chosen. The model is illustrated using a humanoid graphic figure that navigates on a sidewalk in a virtual urban environment. Simulations show our protocol is superior to a simple round robin scheduling mechanism.
Nathan Sprague, Dana H. Ballard