Sciweavers

ICPR
2008
IEEE

Face recognition using curvelet based PCA

14 years 6 months ago
Face recognition using curvelet based PCA
This paper identifies a novel feature space to address the problem of human face recognition from still images. This is based on the PCA space of the features extracted by a new multiresolution analysis tool called Fast Discrete Curvelet Transform. Curvelet Transform has better directional and edge representation abilities than widely used wavelet transform. Inspired by these attractive attributes of curvelets, we introduce the idea of decomposing images into its curvelet subbands and applying PCA (Principal Component Analysis) on the selected subbands in order to create a representative feature set. Experiments have been designed for both single and multiple training images per subject. A comparative study with wavelet-based and traditional PCA techniques is also presented. High accuracy rate achieved by the proposed method for two well-known databases indicates the potential of this curvelet based feature extraction method.
Tanaya Mandal, Q. M. Jonathan Wu
Added 30 May 2010
Updated 30 May 2010
Type Conference
Year 2008
Where ICPR
Authors Tanaya Mandal, Q. M. Jonathan Wu
Comments (0)