We consider transmission over the ergodic fading multiple-antenna broadcast (MIMO-BC) channel with partial channel state information at the transmitter and full information at the receiver. Over the equivalent non-fading channel, capacity has recently been shown to be achievable using transmission schemes that were designed for the "dirty paper" channel. We focus on a similar "fading paper" model. The evaluation of the fading paper capacity is difficult to obtain. We confine ourselves to the linear-assignment capacity, which we define, and use convex analysis methods to prove that its maximizing distribution is Gaussian. We compare our fading-paper transmission to an application of dirty paper coding that ignores the partial state information and assumes the channel is fixed at the average fade. We show that a gain is easily achieved by appropriately exploiting the information. We also consider a cooperative upper bound on the sum