Sciweavers

MICCAI
2007
Springer

False Positive Reduction in Mammographic Mass Detection Using Local Binary Patterns

15 years 1 months ago
False Positive Reduction in Mammographic Mass Detection Using Local Binary Patterns
In this paper we propose a new approach for false positive reduction in the field of mammographic mass detection. The goal is to distinguish between the true recognized masses and the ones which actually are normal parenchyma. Our proposal is based on Local Binary Patterns (LBP) for representing salient micro-patterns and preserving at the same time the spatial structure of the masses. Once the descriptors are extracted, Support Vector Machines (SVM) are used for classifying the detected masses. We test our proposal using a set of 1792 suspicious regions of interest extracted from the DDSM database. Exhaustive experiments illustrate that LBP features are effective and efficient for false positive reduction even at different mass sizes, a critical aspect in mass detection systems. Moreover, we compare our proposal with current methods showing that LBP obtains better performance.
Arnau Oliver, Joan Martí, Jordi Freixenet,
Added 14 Nov 2009
Updated 14 Nov 2009
Type Conference
Year 2007
Where MICCAI
Authors Arnau Oliver, Joan Martí, Jordi Freixenet, Xavier Lladó
Comments (0)