This paper studies the problem of finding a minimum-length schedule of a power-controlled wireless network subject to traffic demands and SINR (signal-to-interferenceplus-noise ratio) constraints. We propose a column generation based algorithm that finds the optimal schedules and transmit powers. The column generation method decomposes a complex linear optimization problem into a restricted master problem and a pricing problem. We develop a new formulation of the pricing problem using the Perron-Frobenius eigenvalue condition, which enables us to integrate link scheduling with power control in a single framework. This new formulation reduces the complexity of the pricing problem, and thus improves the overall efficiency of the column generation method significantly