Large-scale attacks, such as those launched by worms and zombie farms, pose a serious threat to our network-centric society. Existing approaches such as software patches are simply unable to cope with the volume and speed with which new vulnerabilities are being discovered. In this paper, we develop a new approach that can provide effective protection against a vast majority of these attacks that exploit memory errors in C/C++ programs. Our approach, called COVERS, uses a forensic analysis of a victim server’s memory to correlate attacks to inputs received over the network, and automatically develop a signature that characterizes inputs that carry attacks. The signatures tend to capture characteristics of the underlying vulnerability (e.g., a message field being too long) rather than the characteristics of an attack, which makes them effective against variants of attacks. Our approach introduces low overheads (under 10%), does not require access to source code of the protected serv...
Zhenkai Liang, R. Sekar