We present a near linear time algorithm for constructing hierarchical nets in finite metric spaces with constant doubling dimension. This data-structure is then applied to obtain improved algorithms for the following problems: approximate nearest neighbor search, well-separated pair decomposition, spanner construction, compact representation scheme, doubling measure, and computation of the (approximate) Lipschitz constant of a function. In all cases, the running (preprocessing) time is near linear and the space being used is linear.