Cartesian tensor basis have been widely used to approximate spherical functions. In Medical Imaging, tensors of various orders have been used to model the diffusivity function in Diffusion-weighted MRI data sets. However, it is known that the peaks of the diffusivity do not correspond to orientations of the underlying fibers and hence the displacement probability profiles should be employed instead. In this paper, we present a novel representation of the probability profile by a 4th order tensor, which is a smooth spherical function that can approximate single-fibers as well as multiple-fiber structures. We also present a method for efficiently estimating the unknown tensor coefficients of the probability profile directly from a given high-angular resolution diffusion-weighted (HARDI) data set. The accuracy of our model is validated by experiments on synthetic and real HARDI datasets from a fixed rat spinal cord.
Angelos Barmpoutis, Baba C. Vemuri, John R. Forder