High-quality image inpainting methods based on nonlinear higher-order partial differential equations have been developed in the last few years. These methods are iterative by nature, with a time variable serving as iteration parameter. For reasons of stability a large number of iterations can be needed which results in a computational complexity that is often too large for interactive image manipulation. Based on a detailed analysis of stationary first order transport equations the current paper develops a fast noniterative method for image inpainting. It traverses the inpainting domain by the fast marching method just once while transporting, along the way, image values in a coherence direction robustly estimated by means of the structure tensor. Depending on a measure of coherence strength the method switches continuously between diffusion and directional transport. It satisfies a comparison principle. Experiments with the inpainting of gray tone and color images show that the nove...