Abstract—A class of capacity-achieving, low-complexity, highreliability, variable-rate coding schemes is developed for communication over discrete memoryless channels with noiseless feedback. Algorithms for encoding and decoding that require computations growing linearly with the number of channel inputs used are developed. The error exponent associated with the scheme is shown to be optimal and implies that capacity is achievable. Simulations are performed and support the analytically predicted high performance and low complexity.
James M. Ooi, Gregory W. Wornell