— This paper describes the FAST methodology that enables a single FPGA to accelerate the performance of cycle-accurate computer system simulators modeling modern, realistic SoCs, embedded systems and standard desktop/laptop/server computer systems. The methodology partitions a simulator into (i) a functional model that simulates the functionality of the computer system and (ii) a predictive model that predicts performance and other metrics. The partitioning is crafted to map most of the parallel work onto the hardware-based predictive model, eliminating much of the complexity and difficulty of simulating parallel constructs on a sequential platform. FAST conventions and libraries have been designed to make creating, modifying, using and measuring such simulators straightforward. We describe a prototype FAST system: a full-system, RTL-level cycleaccurate-capable computer system simulator that executes the x86 ISA, boots unmodified Linux and executes unmodified x86 applications. The...
Derek Chiou, Dam Sunwoo, Joonsoo Kim, Nikhil A. Pa