Abstract. The present article summarizes the state of the art algorithms to compute the discrete Moreau envelope, and presents a new linear-time algorithm, named NEP for NonExpansive Proximal mapping. Numerical comparisons between the NEP and two existing algorithms: The Linear-time Legendre Transform (LLT) and the Parabolic Envelope (PE) algorithms are performed. Worst-case time complexity, convergence results, numerical comparison, and examples are included. The fast Moreau envelope algorithms first factor the Moreau envelope as several one-dimensional transforms and then reduce the brute force quadratic worst-case time complexity to linear time by using either the equivalence with Fast Legendre Transform algorithms, the computation of a lower envelope of parabolas, or, in the convex case, the non expansiveness of the proximal mapping.