Sciweavers

CALC
2001
Springer

Fast Reduction of Ternary Quadratic Forms

14 years 4 months ago
Fast Reduction of Ternary Quadratic Forms
We show that a positive definite integral ternary form can be reduced with O(M(s) log2 s) bit operations, where s is the binary encoding length of the form and M(s) is the bit-complexity of s-bit integer multiplication. This result is achieved in two steps. First we prove that the the classical Gaussian algorithm for ternary form reduction, in the variant of Lagarias, has this worst case running time. Then we show that, given a ternary form which is reduced in the Gaussian sense, it takes only a constant number of arithmetic operations and a constant number of binary-form reductions to fully reduce the form. Finally we describe how this algorithm can be generalized to higher dimensions. Lattice basis reduction and shortest vector computation in fixed dimension d can be done with O(M(s) logd−1 s) bit-operations.
Friedrich Eisenbrand, Günter Rote
Added 28 Jul 2010
Updated 28 Jul 2010
Type Conference
Year 2001
Where CALC
Authors Friedrich Eisenbrand, Günter Rote
Comments (0)