Minimum Spanning Tree (MST) is one of the most studied combinatorial problems with practical applications in VLSI layout, wireless communication, and distributed networks, recent problems in biology and medicine such as cancer detection, medical imaging, and proteomics, and national security and bioterrorism such as detecting the spread of toxins through populations in the case of biological/chemical warfare. Most of the previous attempts for improving the speed of MST using parallel computing are too complicated to implement or perform well only on special graphs with regular structure. In this paper we design and implement four parallel MST algorithms (three variations of Bor
David A. Bader, Guojing Cong