Abstract—The predicted failure rates of future supercomputers loom the groundbreaking research large machines are expected to foster. Therefore, resilient extreme-scale applications are an absolute necessity to effectively use the new generation of supercomputers. Rollback-recovery techniques have been traditionally used in HPC to provide resilience. Among those techniques, message logging provides the appealing features of saving energy, accelerating recovery, and having low performance penalty. Its increased memory consumption is, however, an important downside. This paper introduces memory-constrained message logging (MCML), a general framework for decreasing the memory footprint of message-logging protocols. In particular, we demonstrate the effectiveness of MCML in maintaining message logging feasible for applications with substantial communication imbalance. This type of applications appear in many scientific fields. We present experimental results with several parallel codes...
Esteban Meneses, Laxmikant V. Kalé