In view of the substantial number of existing feature selection algorithms, the need arises to count on criteria that enables to adequately decide which algorithm to use in certain situations. This work reviews several fundamental algorithms found in the literature and assesses their performance in a controlled scenario. A scoring measure ranks the algorithms by taking into account the amount of relevance, irrelevance and redundance on sample data sets. This measure computes the degree of matching between the output given by the algorithm and the known optimal solution. Sample size effects are also studied.