Sciweavers

JUCS
2008

Feature Selection for the Classification of Large Document Collections

13 years 11 months ago
Feature Selection for the Classification of Large Document Collections
: Feature selection methods are often applied in the context of document classification. They are particularly important for processing large data sets that may contain millions of documents and are typically represented by a large number, possibly tens of thousands of features. Processing large data sets thus raises the issue of computational resources and we often have to find the right trade-off between the size of the feature set and the number of training data that we can taken into account. Furthermore, depending on the selected classification technique, different feature selection methods require different optimization approaches, raising the issue of compatibility between the two. We demonstrate an effective classifier training and feature selection method that is suitable for large data collections. We explore feature selection based on the weights obtained from linear classifiers themselves, trained on a subset of training documents. While most feature weighting schemes score...
Janez Brank, Dunja Mladenic, Marko Grobelnik, Nata
Added 13 Dec 2010
Updated 13 Dec 2010
Type Journal
Year 2008
Where JUCS
Authors Janez Brank, Dunja Mladenic, Marko Grobelnik, Natasa Milic-Frayling
Comments (0)