Sciweavers

ACL
1997

Fertility Models for Statistical Natural Language Understanding

14 years 1 months ago
Fertility Models for Statistical Natural Language Understanding
Several recent efforts in statistical natural language understanding (NLU) have focused on generating clumps of English words from semantic meaning concepts (Miller et al., 1995; Levin and Pieraccini, 1995; Epstein et al., 1996; Epstein, 1996). This paper extends the IBM Machine Translation Group's concept of fertility (Brown et al., 1993) to the generation of clumps for natural language understanding. The basic underlying intuition is that a single concept may be expressed in English as many disjoint clump of words. We present two fertility models which attempt to capture this phenomenon. The first is a Poisson model which leads to appealing computational simplicity. The second is a general nonparametric fertility model. The general model's parameters are bootstrapped from the Poisson model and updated by the EM algorithm. These fertility models can be used to impose clump fertility structure on top of preexisting clump generation models. Here, we present results for adding...
Stephen Della Pietra, Mark Epstein, Salim Roukos,
Added 01 Nov 2010
Updated 01 Nov 2010
Type Conference
Year 1997
Where ACL
Authors Stephen Della Pietra, Mark Epstein, Salim Roukos, Todd Ward
Comments (0)