Graphs are prevalently used to model the relationships between objects in various domains. With the increasing usage of graph databases, it has become more and more demanding to efficiently process graph queries. Querying graph databases is costly since it involves subgraph isomorphism testing, which is an NP-complete problem. In recent years, some effective graph indexes have been proposed to first obtain a candidate answer set by filtering part of the false results and then perform verification on each candidate by checking subgraph isomorphism. Query performance is improved since the number of subgraph isomorphism tests is reduced. However, candidate verification is still inevitable, which can be expensive when the size of the candidate answer set is large. In this paper, we propose a novel indexing technique that constructs a nested inverted-index, called FG-index, based on the set of Frequent subGraphs (FGs). Given a graph query that is an FG in the database, FG-index returns the...