Abstract--Diversity-multiplexing tradeoff (DMT) was characterized asymptotically (SNR-> infinity) for i.i.d. Rayleigh fading channel by Zheng and Tse [1]. The SNR-asymptotic DMT overestimates the finite-SNR one [2]. This paper outlines a number of additional limitations and difficulties of the DMT framework and discusses their implications. Using the recent results on the size-asymptotic (in the number of antennas) outage capacity distribution, the finite-SNR, size-asymptotic DMT is derived for a broad class of fading distributions. The SNR range over which the finite-SNR DMT is accurately approximated by the SNR-asymptotic one is characterized. The multiplexing gain definition is shown to affect critically this range and thus should be carefully selected, so that the SNR-asymptotic DMT is an accurate approximation at realistic SNR values and thus has operational significance to be used as a design criterion. The finite-SNR diversity gain is shown to decrease with correlation and po...