Abstract. Discovery of evolving regions in large graphs is an important issue because it is the basis of many applications such as spam websites detection in the Web, community lifecycle exploration in social networks, and so forth. In this paper, we aim to study a new problem, which explores the evolution process between two historic snapshots of an evolving graph. A formal definition of this problem is presented. The evolution process is simulated as a fire propagation scenario based on the Forest Fire Model (FFM) [17]. We propose two efficient solutions to tackle the issue which are grounded on the probabilistic guarantee. The experimental results show that our solutions are efficient with regard to the performance and effective on the well fitness of the major characteristics of evolving graphs.