Complex multimedia queries, aiming to retrieve from large databases those objects that best match the query specification, are usually processed by splitting them into a set of m simpler sub-queries, each dealing with only some of the query features. To determine which are the overall best-matching objects, a rule is then needed to integrate the results of such sub-queries, i.e., how to globally rank the m-dimensional vectors of matching degrees, or partial scores, that objects obtain on the m sub-queries. It is a fact that state-of-the-art approaches all adopt as integration rule a scoring function, such as weighted average, that aggregates the m partial scores into an overall (numerical) similarity score, so that objects can be linearly ordered and only the highest scored ones returned to the user. This choice however forces the system to compromise between the different sub-queries and can easily lead to miss relevant results. In this paper we explore the potentialities of a more ...
Ilaria Bartolini, Paolo Ciaccia, Vincent Oria, M.