Markovian process algebras, such as PEPA and stochastic -calculus, bring a powerful compositional approach to the performance modelling of complex systems. However, the models generated by process algebras, as with other interleaving formalisms, are susceptible to the state space explosion problem. Models with only a modest number of process algebra terms can easily generate so many states that they are all but intractable to traditional solution techniques. Previous work aimed at addressing this problem has presented a fluid-flow approximation allowing the analysis of systems which would otherwise be inaccessible. To achieve this, systems of ordinary differential equations describing the fluid flow of the stochastic process algebra model are generated informally. In this paper, we show formally that for a large class of models, this fluid-flow analysis can be directly derived from the stochastic process algebra model as an approximation to the mean number of component types within th...
Richard A. Hayden, Jeremy T. Bradley